Journal of Organometallic Chemistry, 243 (1983) 423-426 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

OXIDATIVE ADDITION OF HN₃ AND NCN₃ TO DICYCLOPENTADIENYL-VANADIUM AND -CHROMIUM

M. MORÁN *

Departamento de Química Inorgánica, Universidad Autónoma de Madrid, Cantoblanco, Madrid-34 (Spain) and M. GAYOSO

Departamento de Química Inorgánica, Universidad de Santiago de Compostela Santiago de Compostela (Spain)

(Received October 13th, 1982)

Summary

The reactions of HN₃ and NCN₃ with dicyclopentadienylvanadium and dicyclopentadienylchromium, $(\eta - C_s H_s)_2 M$ (M = V and Cr) give $(\eta - C_s H_s)_2 M(N_3)_2$ and $(\eta - C_s H_s)_2 MN_3$ (CN), respectively. The products are characterized by their elemental analysis, magnetic moments, and EPR and IR spectra.

Introduction

In previous papers [1,2] we have described the synthesis of pseudohalogen derivatives of dicyclopentadienyl-titanium, -vanadium and -chromium of the type $(\eta$ -C₅H₅)₂MLL' (L = L' = SCN, SeCN; L = CN, L' = SCN, SeCN; M = Ti, V, Cr) by oxidative addition of the relevant pseudohalogen to the appropriate dicyclopentadienyls. In the present work we present the results obtained with reactions of the same type but using hydrogen azide and cyanazide.

Results and discussion

Addition of an ethereal solution of HN_3 to solutions of $(\eta - C_5H_5)_2M$ (M = V, Cr) under N₂ causes loss of hydrogen and formation in high yield of solids which were shown to be $Cp_2V(N_3)_2$ (already known [3]) and the new $Cp_2Cr(N_3)_2$. The initial purple colour due to Cp_2V changes to blue after addition of HN_3 and a brown solid precipitates. It is probable that this reaction involves two steps:

(a) Oxidative addition of HN_3 to Cp_2V to afford the blue intermediate:

$$Cp_2V + HN_3 \rightarrow Cp_2V < \frac{H}{N}$$

(b) Hydrogen elimination between $Cp_2V(H)N_3$ and HN_3 to yield $Cp_2V(N_3)_2$

$$Cp_2V < \frac{H}{N_3} + HN_3 \rightarrow Cp_2V < \frac{N_3}{N_3} + H_2$$

Compounds ^{<i>a</i>}	8 iso	$A_{\rm iso}(10^{-4}~{\rm cm}^{-1})$	$\Delta m = 1$		$\Delta m = 2$	
			g	Н	g	Н
$R_2 V(N_3)_2$	1.990	66.85				
$R_2VN_3(CN)$	1.984	60.39				
$R_2Cr(N_3)_2$			1.996	3275	3.938	1660
$R_2CrN_3(CN)$			1.999	3270	3.915	1670

TABLE 1 EPR SPECTRA OF PRODUCTS

 $^{\prime\prime} \mathbf{R} = \eta \mathbf{-} \mathbf{C}_5 \mathbf{H}_5.$

It has not been possible to isolate the intermediate, probably because reaction b is very fast. Similar results are obtained in the reaction between Cp_2Cr and HN_3 .

The mixed cyanoazide complexes $(\eta - C_5 H_5)_2 M(CN)N_3$ (M = V, Cr) are easily obtained by mixing ethereal solutions of N₃CN and the corresponding dicyclopentadienyls.

The solutions of the chromium(IV) derivatives are unstable, probably due to instability of this oxidation state of chromium relative to others.

The EPR spectra of the vanadium(IV) complexes in chloroform at room temperature show eight lines, due to the coupling of the non-paired electron with the ⁵¹V (I = 7/2) nucleus. These spectra can be explained using the spin Hamiltonian

$$\hat{H} = gH \cdot \hat{S}_{z} + AI_{z}\hat{S}_{z} \tag{1}$$

for systems with S = 1/2, and applying the 2nd order correction [4]. The parameters of the spin Hamiltonian (eq. 1) are shown in Table 1. The hyperfine coupling constant A values can be used as a measurement of the metal-ligand bond covalency [5], because A decreases when covalency increases; this means that when we replace

TABLE 2

$R_2 V(N_3)_2$	$R_2 V N_3 (CN)$	$R_2Cr(N_3)_2$	$R_2CrN_3(CN)$	Assignment
2069vs	2170vs	2100vs	2150vs	
2028vs		2050vs		$\nu_{\rm as}(N_3)$
1990sh		1995sh		835 27
	2110m		2080s	$\nu(CN)$
1280m	1205m	1275m	1205m	$\nu_{\rm s}({\rm N}_3)$
642w	640w	642w	665w	$\delta(N_1)$
590w		590w	560w	$\gamma(N_3)$
435s	510m	400m	462s	$\nu_{a}(MN_{3})$
392m	395m	412m	425m	$\nu_{a}(MR)$
340m		312m		$\nu_{\rm s}(\rm MN_3)$
	352m		400m	$\nu(MC)$
303m	323m	370m		$\nu_{\rm s}({\rm MR})$
220w	210w	220w		$\delta(MN_3)$
190w				$\delta_a(NMN)$

IR SPECTRA DATA FOR THE COMPLEXES^a

^{*a*} In cm⁻¹, $R = \eta - C_5 H_5$.

a N₃ ligand in $(\eta$ -C₅H₅)V(N₃)₂ by a CN ligand, the covalent character of the bond increases (see Table 1).

The EPR spectra of the chromium complexes, in chloroform solution at -160° C show an intense signal at about 3300 G, corresponding to the $\Delta m = 1$ transition, and a very weak signal at lower values of the magnetic field (1600 G) corresponding to the forbidden transition $\Delta m = 2$. The g values are given in Table 1. These spectra are similar to those observed for chromium(IV) complexes [6,7].

The IR spectra show the characteristic bands of the cyclopentadienyl ligands at 3100, 1400, 1100, 1000 and 800 cm⁻¹ [8,9]. In Table 2 the bands assigned to the cyanide and azide ligands are reported, along with those for the metal-ligand bonds. The range of the stretching vibrations $\nu(CN)$ and $\nu(N_3)$ is characteristic of terminal ligands [10]. The bands for $\nu_{as}(MR)$ appear between 420-390 cm⁻¹ (Table 2) displaced towards frequencies higher than those of the original dicyclopentadienyl compounds owing to increase of the oxidation level of the metal and the larger number of electrons surrounding it.

Experimental

The hydrogen azide [11] and the cyanoazide [12] were obtained by published methods, and the experimental techniques used have been described previously [1,2]. The compounds described below are explosive and should be handled with extreme care.

Preparation of $(\eta - C_5 H_5)_2 V(N_3)_2$

Freshly sublimed $(\eta$ -C₅H₅)₂V (1 g, 5.5 mmol) was dissolved in Et₂O (40 cm³) under a N₂ atmosphere in a 100 ml two-necked flask provided with a N₂ inlet, magnetic stirrer and pressure-equalized dropping funnel. The solution was cooled to 0°C and through the funnel was added an ethereal HN₃ solution, prepared from NaN₃ (6 g, 92 mmol) and conc. H₂SO₄ (12 cm³). A brown solid separated immediately and a gas was evolved, and was identified as hydrogen. Stirring was continued for 1 h at 0°C and the solid was filtered off, washed several times with Et₂O, and dried in vacuo at room temperature. This solid, when dry, explodes readily upon heating or shock. It is only slightly soluble in the common solvents. Yields 90%. (Found: C, 45.1; H, 3.9; N, 31.2; V, 18.7. C₁₀H₁₀N₆V calcd.: C, 45.3; H, 3.8; N, 31.8; V, 19.2%). μ_{eff} 1.67 BM.

Preparation of $(\eta - C_5 H_5)_2 Cr(N_3)_2$

This compound was obtained by the method described above using $(\eta$ -C₅H₅)₂Cr (1.5 g, 8.2 mmol) and an ethereal HN₃ solution obtained from NaN₃ (8 g, 120 mmol) and conc. H₂SO₄ (14 cm³). The violet solid which separates readily explodes upon heating or shock. Yield 80%. (Found: C, 46.7 H, 3.4; N, 30.0; Cr, 18.2. C₁₀H₁₀N₆Cr calcd.: C, 47.4; H, 3.5; N, 30.2; Cr, 18.7%). μ_{eff} 2.52 BM.

Preparation of $(\eta - C_5 H_5)_2 V N_3(CN)$

The $(\eta$ -C₅H₅)₂V (1 g, 5.5 mmol) was dissolved in Et₂O (40 cm³) in a 100 ml two-necked flask provided with a N₂ inlet, magnetic stirrer and pressure equalizing dropping funnel. The flask was cooled to -20° C and a N₃CN solution in ether,

Journal of Organo metallic Chemistry

FORTHCOMING PAPERS IN JOURNAL OF ORGANOMETALLIC CHEMISTRY We have pleasure in announcing a new service to the subscribers and to the readers of our Journal of Organometallic Chemistry.

Six times per year a 16-page section will appear containing the titles of articles which have been accepted for publication in the Journal. This list also contains the advance contents lists of issues that have already been compiled. Some 250 titles will appear in each of the lists.

Offprints of this section are available free of charge to all those requesting it. You are invited to complete the order card below and to post it to the publishers. You will then receive your free copy on a regular basis.

ORDER FORM

I would appreciate receiving on a regular basis my free copy of the brochure containing the titles of forthcoming papers to appear in the Journal of Organometallic Chemistry.

Please mail to my current address:

Name:			<u></u>	.
Position:			·····	·····
Institute/Company:	······			
Address:		City:		,
Country:		Zip:		

ORDER FORM

I would appreciate receiving on a regular basis my free copy of the brochure containing the titles of forthcoming papers to appear in the Journal of Organometallic Chemistry.

Please mail to my current address:

Name:	
Position:	
Institute/Company:	
Address:	City:
Country:	Zip: